Normal Convergence Using Malliavin Calculus With Applications and Examples
We prove the chain rule in the more general framework of the Wiener-Poisson space, allowing us to obtain the so-called Nourdin-Peccati bound. From this bound we obtain a second-order Poincare-type inequality that is useful in terms of computations. For completeness we survey these results on the Wie...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the chain rule in the more general framework of the Wiener-Poisson space, allowing us to obtain the so-called Nourdin-Peccati bound. From this bound we obtain a second-order Poincare-type inequality that is useful in terms of computations. For completeness we survey these results on the Wiener space, the Poisson space, and the Wiener-Poisson space. We also give several applications to central limit theorems with relevant examples: linear functionals of Gaussian subordinated fields (where the subordinated field can be processes like fractional Brownian motion or the solution of the Ornstein-Uhlenbeck SDE driven by fractional Brownian motion), Poisson functionals in the first Poisson chaos restricted to infinitely many \small" jumps (particularly fractional Levy processes) and the product of two Ornstein-Uhlenbeck processes (one in the Wiener space and the other in the Poisson space). We also obtain bounds for their rate of convergence to normality. |
---|---|
ISSN: | 2331-8422 |