Edge precoloring extension of hypercubes
We consider the problem of extending partial edge colorings of hypercubes. In particular, we obtain an analogue of the positive solution to the famous Evans' conjecture on completing partial Latin squares by proving that every proper partial edge coloring of at most \(d-1\) edges of the \(d\)-d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of extending partial edge colorings of hypercubes. In particular, we obtain an analogue of the positive solution to the famous Evans' conjecture on completing partial Latin squares by proving that every proper partial edge coloring of at most \(d-1\) edges of the \(d\)-dimensional hypercube \(Q_d\) can be extended to a proper \(d\)-edge coloring of \(Q_d\). Additionally, we characterize which partial edge colorings of \(Q_d\) with precisely \(d\) precolored edges are extendable to proper \(d\)-edge colorings of \(Q_d\), and consider some related edge precoloring extension problems of hypercubes. |
---|---|
ISSN: | 2331-8422 |