Kernels from Compactifications
To any affine scheme with a \(\mathbb{G}_m\)-action, we provide a Bousfield colocalization on the equivariant derived category of modules by constructing, via homotopical methods, an idempotent integral kernel. This endows the equivariant derived category with a canonical semi-orthogonal decompositi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To any affine scheme with a \(\mathbb{G}_m\)-action, we provide a Bousfield colocalization on the equivariant derived category of modules by constructing, via homotopical methods, an idempotent integral kernel. This endows the equivariant derived category with a canonical semi-orthogonal decomposition. As a special case, we demonstrate that grade-restriction windows appear as a consequence of this construction, giving a new proof of wall-crossing equivalences which works over an arbitrary base. The construction globalizes to yield interesting integral transforms associated to \(D\)-flips. |
---|---|
ISSN: | 2331-8422 |