Kernels from Compactifications

To any affine scheme with a \(\mathbb{G}_m\)-action, we provide a Bousfield colocalization on the equivariant derived category of modules by constructing, via homotopical methods, an idempotent integral kernel. This endows the equivariant derived category with a canonical semi-orthogonal decompositi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-10
Hauptverfasser: Ballard, Matthew R, Diemer, Colin, Favero, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To any affine scheme with a \(\mathbb{G}_m\)-action, we provide a Bousfield colocalization on the equivariant derived category of modules by constructing, via homotopical methods, an idempotent integral kernel. This endows the equivariant derived category with a canonical semi-orthogonal decomposition. As a special case, we demonstrate that grade-restriction windows appear as a consequence of this construction, giving a new proof of wall-crossing equivalences which works over an arbitrary base. The construction globalizes to yield interesting integral transforms associated to \(D\)-flips.
ISSN:2331-8422