Optimal Pricing and Admission Control in a Queueing System with Periodically Varying Parameters
We consider congestion control in a nonstationary queueing system. Assuming that the arrival and service rates are bounded, periodic functions of time, a Markov decision process (MDP) formulation is developed. We show under the infinite horizon discounted and average reward optimality criteria, for...
Gespeichert in:
Veröffentlicht in: | Queueing systems 2004-07, Vol.47 (3), p.177-199 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider congestion control in a nonstationary queueing system. Assuming that the arrival and service rates are bounded, periodic functions of time, a Markov decision process (MDP) formulation is developed. We show under the infinite horizon discounted and average reward optimality criteria, for each fixed time, optimal pricing and admission control strategies are nondecreasing in the number of customers in the system. This extends stationary results to the nonstationary setting. Despite this result, the problem still seems intractable. We propose an easily implementable pointwise stationary approximation (PSA) to approximate the optimal policies, suggest a heuristic to improve the implementation of the PSA and verify its usefulness via a numerical study. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0257-0130 1572-9443 |
DOI: | 10.1023/B:QUES.0000035313.20223.3f |