Sojourn times in (discrete) time shared systems and their continuous time limits
We study the mean sojourn times in two M/G/1 weighted round-robin systems: the weight of a customer at any given point in time in the first system is a function of its age (imparted service), while in the second system the weight is a function of the customer’s remaining processing time (RPT). We pr...
Gespeichert in:
Veröffentlicht in: | Queueing systems 2008-12, Vol.60 (3-4), p.171-191 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the mean sojourn times in two M/G/1 weighted round-robin systems: the weight of a customer at any given point in time in the first system is a function of its age (imparted service), while in the second system the weight is a function of the customer’s remaining processing time (RPT). We provide a sufficient condition under which the sojourn time of a customer with large service requirement (say,
x
) and that arrives in the steady state is close to that of a customer which starts a busy period and has the same service requirement. A sufficient condition is then provided for continuity of the performance metric (the mean sojourn time) as the quanta size in the discrete time system converges to 0. We then consider a multi-class system and provide relative ordering of the mean sojourn times among the various classes. |
---|---|
ISSN: | 0257-0130 1572-9443 |
DOI: | 10.1007/s11134-008-9092-7 |