An approach to Griffiths conjecture

The Griffiths conjecture asserts that every ample vector bundle \(E\) over a compact complex manifold \(S\) admits a hermitian metric with positive curvature in the sense of Griffiths. In this article we give a sufficient condition for a positive hermitian metric on \(\mathcal{O}_{\mathbb{P}(E^*)}(1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-10
1. Verfasser: Naumann, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Griffiths conjecture asserts that every ample vector bundle \(E\) over a compact complex manifold \(S\) admits a hermitian metric with positive curvature in the sense of Griffiths. In this article we give a sufficient condition for a positive hermitian metric on \(\mathcal{O}_{\mathbb{P}(E^*)}(1)\) to induce a Griffiths positive \(L^2\)-metric on the vector bundle \(E\). This result suggests to study the relative K\"ahler-Ricci flow on \(\mathcal{O}_{\mathbb{P}(E^*)}(1)\) for the fibration \(\mathbb{P}(E^*)\to S\). We define a flow and give arguments for the convergence.
ISSN:2331-8422