Quantifying plasma immersion ion implantation of insulating surfaces in a dielectric barrier discharge: how to control the dose

The plasma physics of dielectric barrier discharges (DBD) for carrying out ion implantation in insulators is investigated. A hollow cathode DBD excited by high-voltage pulses is suitable for ion bombardment of the surfaces of insulating tubing, porous material, particles and sheets. Plasma immersion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2018-07, Vol.474 (2215), p.20180263-20180263
Hauptverfasser: Tran, Clara T., Ganesan, Rajesh, McKenzie, David R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The plasma physics of dielectric barrier discharges (DBD) for carrying out ion implantation in insulators is investigated. A hollow cathode DBD excited by high-voltage pulses is suitable for ion bombardment of the surfaces of insulating tubing, porous material, particles and sheets. Plasma immersion ion implantation of insulating surfaces is useful for many applications in medicine and engineering. The ion bombardment of glass is useful for cleaning and surface modification. The ion implantation of polymers creates radicals that are able to bind molecules to their surfaces for applications in medical procedures and diagnostics. A wire diagnostic probe and optical emission spectroscopy are used for experimental work. A theory based on mutual capacitance is developed to convert data from the probe to give implanted charge as a function of pressure, voltage and pulse duration. We find the operating conditions that allow for charge to be implanted and those that achieve the highest implanted charge.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2018.0263