NOvA Short-Baseline Tau Neutrino Appearance Search
Standard three-flavor neutrino oscillations have well explained by a wide range of neutrino experiments. However, the anomalous results, such as electron-antineutrino excess seen by LSND and MiniBooNE do not fit the three-flavor paradigm. This can be explained by an additional fourth flavor sterile...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Standard three-flavor neutrino oscillations have well explained by a wide range of neutrino experiments. However, the anomalous results, such as electron-antineutrino excess seen by LSND and MiniBooNE do not fit the three-flavor paradigm. This can be explained by an additional fourth flavor sterile neutrino at a larger scale than the existing three flavor neutrinos. The NOvA experiment consists of two finely segmented, liquid scintillator detectors operating 14 .6 mrad off-axis from the NuMI muon-neutrino beam. The Near Detector is located on the Fermilab campus, 1 km from the NuMI target, while the Far Detector is located at Ash River, MN, 810 km from the NuMI target. The NOvA experiment is primarily designed to measure electron-neutrino appearance at the Far Detector using the Near Detector to control systematic uncertainties; however, the Near Detector is well suited for searching for anomalous short-baseline oscillations. This poster will present a novel method for selecting tau neutrino interactions with high purity at the Near Detector using a convolutional neural network. Using this method, the sensitivity to anomalous short-baseline tau-neutrino appearance due to sterile neutrino oscillations will be presented. |
---|---|
ISSN: | 2331-8422 |