The Cauchy problem for the Finsler heat equation

Let \(H\) be a norm of \({\bf R}^N\) and \(H_0\) the dual norm of \(H\). Denote by \(\Delta_H\) the Finsler-Laplace operator defined by \(\Delta_Hu:=\mbox{div}\,(H(\nabla u)\nabla_\xi H(\nabla u))\). In this paper we prove that the Finsler-Laplace operator \(\Delta_H\) acts as a linear operator to \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-10
Hauptverfasser: Akagi, Goro, Ishige, Kazuhiro, Sato, Ryuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Akagi, Goro
Ishige, Kazuhiro
Sato, Ryuichi
description Let \(H\) be a norm of \({\bf R}^N\) and \(H_0\) the dual norm of \(H\). Denote by \(\Delta_H\) the Finsler-Laplace operator defined by \(\Delta_Hu:=\mbox{div}\,(H(\nabla u)\nabla_\xi H(\nabla u))\). In this paper we prove that the Finsler-Laplace operator \(\Delta_H\) acts as a linear operator to \(H_0\)-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation $$ \partial_t u=\Delta_H u,\qquad x\in{\bf R}^N,\quad t>0, $$ where \(N\ge 1\) and \(\partial_t:=\partial/\partial t\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076749962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076749962</sourcerecordid><originalsourceid>FETCH-proquest_journals_20767499623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCMlIVXBOLE3OqFQoKMpPyknNVUjLL1IoAQq7ZeYV56QWKWSkJpYopBaWJpZk5ufxMLCmJeYUp_JCaW4GZTfXEGcPXaDuwtLU4pL4rPzSojygVLyRgbmZuYmlpZmRMXGqADi-Ms8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076749962</pqid></control><display><type>article</type><title>The Cauchy problem for the Finsler heat equation</title><source>Free E- Journals</source><creator>Akagi, Goro ; Ishige, Kazuhiro ; Sato, Ryuichi</creator><creatorcontrib>Akagi, Goro ; Ishige, Kazuhiro ; Sato, Ryuichi</creatorcontrib><description>Let \(H\) be a norm of \({\bf R}^N\) and \(H_0\) the dual norm of \(H\). Denote by \(\Delta_H\) the Finsler-Laplace operator defined by \(\Delta_Hu:=\mbox{div}\,(H(\nabla u)\nabla_\xi H(\nabla u))\). In this paper we prove that the Finsler-Laplace operator \(\Delta_H\) acts as a linear operator to \(H_0\)-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation $$ \partial_t u=\Delta_H u,\qquad x\in{\bf R}^N,\quad t&gt;0, $$ where \(N\ge 1\) and \(\partial_t:=\partial/\partial t\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cauchy problems ; Laplace transforms ; Linear operators ; Nonlinear programming ; Thermodynamics</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Akagi, Goro</creatorcontrib><creatorcontrib>Ishige, Kazuhiro</creatorcontrib><creatorcontrib>Sato, Ryuichi</creatorcontrib><title>The Cauchy problem for the Finsler heat equation</title><title>arXiv.org</title><description>Let \(H\) be a norm of \({\bf R}^N\) and \(H_0\) the dual norm of \(H\). Denote by \(\Delta_H\) the Finsler-Laplace operator defined by \(\Delta_Hu:=\mbox{div}\,(H(\nabla u)\nabla_\xi H(\nabla u))\). In this paper we prove that the Finsler-Laplace operator \(\Delta_H\) acts as a linear operator to \(H_0\)-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation $$ \partial_t u=\Delta_H u,\qquad x\in{\bf R}^N,\quad t&gt;0, $$ where \(N\ge 1\) and \(\partial_t:=\partial/\partial t\).</description><subject>Cauchy problems</subject><subject>Laplace transforms</subject><subject>Linear operators</subject><subject>Nonlinear programming</subject><subject>Thermodynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCMlIVXBOLE3OqFQoKMpPyknNVUjLL1IoAQq7ZeYV56QWKWSkJpYopBaWJpZk5ufxMLCmJeYUp_JCaW4GZTfXEGcPXaDuwtLU4pL4rPzSojygVLyRgbmZuYmlpZmRMXGqADi-Ms8</recordid><startdate>20171002</startdate><enddate>20171002</enddate><creator>Akagi, Goro</creator><creator>Ishige, Kazuhiro</creator><creator>Sato, Ryuichi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171002</creationdate><title>The Cauchy problem for the Finsler heat equation</title><author>Akagi, Goro ; Ishige, Kazuhiro ; Sato, Ryuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20767499623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cauchy problems</topic><topic>Laplace transforms</topic><topic>Linear operators</topic><topic>Nonlinear programming</topic><topic>Thermodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Akagi, Goro</creatorcontrib><creatorcontrib>Ishige, Kazuhiro</creatorcontrib><creatorcontrib>Sato, Ryuichi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akagi, Goro</au><au>Ishige, Kazuhiro</au><au>Sato, Ryuichi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Cauchy problem for the Finsler heat equation</atitle><jtitle>arXiv.org</jtitle><date>2017-10-02</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Let \(H\) be a norm of \({\bf R}^N\) and \(H_0\) the dual norm of \(H\). Denote by \(\Delta_H\) the Finsler-Laplace operator defined by \(\Delta_Hu:=\mbox{div}\,(H(\nabla u)\nabla_\xi H(\nabla u))\). In this paper we prove that the Finsler-Laplace operator \(\Delta_H\) acts as a linear operator to \(H_0\)-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation $$ \partial_t u=\Delta_H u,\qquad x\in{\bf R}^N,\quad t&gt;0, $$ where \(N\ge 1\) and \(\partial_t:=\partial/\partial t\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076749962
source Free E- Journals
subjects Cauchy problems
Laplace transforms
Linear operators
Nonlinear programming
Thermodynamics
title The Cauchy problem for the Finsler heat equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Cauchy%20problem%20for%20the%20Finsler%20heat%20equation&rft.jtitle=arXiv.org&rft.au=Akagi,%20Goro&rft.date=2017-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076749962%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076749962&rft_id=info:pmid/&rfr_iscdi=true