The Cauchy problem for the Finsler heat equation
Let \(H\) be a norm of \({\bf R}^N\) and \(H_0\) the dual norm of \(H\). Denote by \(\Delta_H\) the Finsler-Laplace operator defined by \(\Delta_Hu:=\mbox{div}\,(H(\nabla u)\nabla_\xi H(\nabla u))\). In this paper we prove that the Finsler-Laplace operator \(\Delta_H\) acts as a linear operator to \...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(H\) be a norm of \({\bf R}^N\) and \(H_0\) the dual norm of \(H\). Denote by \(\Delta_H\) the Finsler-Laplace operator defined by \(\Delta_Hu:=\mbox{div}\,(H(\nabla u)\nabla_\xi H(\nabla u))\). In this paper we prove that the Finsler-Laplace operator \(\Delta_H\) acts as a linear operator to \(H_0\)-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation $$ \partial_t u=\Delta_H u,\qquad x\in{\bf R}^N,\quad t>0, $$ where \(N\ge 1\) and \(\partial_t:=\partial/\partial t\). |
---|---|
ISSN: | 2331-8422 |