The Cauchy problem for the Finsler heat equation

Let \(H\) be a norm of \({\bf R}^N\) and \(H_0\) the dual norm of \(H\). Denote by \(\Delta_H\) the Finsler-Laplace operator defined by \(\Delta_Hu:=\mbox{div}\,(H(\nabla u)\nabla_\xi H(\nabla u))\). In this paper we prove that the Finsler-Laplace operator \(\Delta_H\) acts as a linear operator to \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-10
Hauptverfasser: Akagi, Goro, Ishige, Kazuhiro, Sato, Ryuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(H\) be a norm of \({\bf R}^N\) and \(H_0\) the dual norm of \(H\). Denote by \(\Delta_H\) the Finsler-Laplace operator defined by \(\Delta_Hu:=\mbox{div}\,(H(\nabla u)\nabla_\xi H(\nabla u))\). In this paper we prove that the Finsler-Laplace operator \(\Delta_H\) acts as a linear operator to \(H_0\)-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation $$ \partial_t u=\Delta_H u,\qquad x\in{\bf R}^N,\quad t>0, $$ where \(N\ge 1\) and \(\partial_t:=\partial/\partial t\).
ISSN:2331-8422