Hodge decomposition and the Shapley value of a cooperative game

We show that a cooperative game may be decomposed into a sum of component games, one for each player, using the combinatorial Hodge decomposition on a graph. This decomposition is shown to satisfy certain efficiency, null-player, symmetry, and linearity properties. Consequently, we obtain a new char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-09
Hauptverfasser: Stern, Ari, Tettenhorst, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a cooperative game may be decomposed into a sum of component games, one for each player, using the combinatorial Hodge decomposition on a graph. This decomposition is shown to satisfy certain efficiency, null-player, symmetry, and linearity properties. Consequently, we obtain a new characterization of the classical Shapley value as the value of the grand coalition in each player's component game. We also relate this decomposition to a least-squares problem involving inessential games (in a similar spirit to previous work on least-squares and minimum-norm solution concepts) and to the graph Laplacian. Finally, we generalize this approach to games with weights and/or constraints on coalition formation.
ISSN:2331-8422