Catalan States of Lattice Crossing: Application of Plucking Polynomial

For a Catalan state \(C\) of a lattice crossing \(L\left( m,n\right) \) with no returns on one side, we find its coefficient \(C\left( A\right) \) in the Relative Kauffman Bracket Skein Module expansion of \(L\left( m,n\right) \). We show, in particular, that \(C\left( A\right) \) can be found using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-11
Hauptverfasser: Dabkowski, Mieczyslaw K, Przytycki, Jozef H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dabkowski, Mieczyslaw K
Przytycki, Jozef H
description For a Catalan state \(C\) of a lattice crossing \(L\left( m,n\right) \) with no returns on one side, we find its coefficient \(C\left( A\right) \) in the Relative Kauffman Bracket Skein Module expansion of \(L\left( m,n\right) \). We show, in particular, that \(C\left( A\right) \) can be found using the plucking polynomial of a rooted tree with a delay function associated to \(C\). Furthermore, for \(C\) with returns on one side only, we prove that \(C\left( A\right) \) is a product of Gaussian polynomials, and its coefficients form a unimodal sequence.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076683670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076683670</sourcerecordid><originalsourceid>FETCH-proquest_journals_20766836703</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScCzGxaXGTYnFwKOheHiGV1JjUvtfBv7eCH-B0h3MXLJFK7bJyL-WKpYi9EELqQua5SlhdAYGHwK8EZJHHjl-AyBnLqzEiunA_8OMweGeAXAzfofGTeczAm-jfIT4d-A1bduDRpr-u2bY-3apzNozxNVmkto_TGGZqpSi0LpUuhPrv-gCUPzsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076683670</pqid></control><display><type>article</type><title>Catalan States of Lattice Crossing: Application of Plucking Polynomial</title><source>Free E- Journals</source><creator>Dabkowski, Mieczyslaw K ; Przytycki, Jozef H</creator><creatorcontrib>Dabkowski, Mieczyslaw K ; Przytycki, Jozef H</creatorcontrib><description>For a Catalan state \(C\) of a lattice crossing \(L\left( m,n\right) \) with no returns on one side, we find its coefficient \(C\left( A\right) \) in the Relative Kauffman Bracket Skein Module expansion of \(L\left( m,n\right) \). We show, in particular, that \(C\left( A\right) \) can be found using the plucking polynomial of a rooted tree with a delay function associated to \(C\). Furthermore, for \(C\) with returns on one side only, we prove that \(C\left( A\right) \) is a product of Gaussian polynomials, and its coefficients form a unimodal sequence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Plucking ; Polynomials</subject><ispartof>arXiv.org, 2017-11</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dabkowski, Mieczyslaw K</creatorcontrib><creatorcontrib>Przytycki, Jozef H</creatorcontrib><title>Catalan States of Lattice Crossing: Application of Plucking Polynomial</title><title>arXiv.org</title><description>For a Catalan state \(C\) of a lattice crossing \(L\left( m,n\right) \) with no returns on one side, we find its coefficient \(C\left( A\right) \) in the Relative Kauffman Bracket Skein Module expansion of \(L\left( m,n\right) \). We show, in particular, that \(C\left( A\right) \) can be found using the plucking polynomial of a rooted tree with a delay function associated to \(C\). Furthermore, for \(C\) with returns on one side only, we prove that \(C\left( A\right) \) is a product of Gaussian polynomials, and its coefficients form a unimodal sequence.</description><subject>Plucking</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScCzGxaXGTYnFwKOheHiGV1JjUvtfBv7eCH-B0h3MXLJFK7bJyL-WKpYi9EELqQua5SlhdAYGHwK8EZJHHjl-AyBnLqzEiunA_8OMweGeAXAzfofGTeczAm-jfIT4d-A1bduDRpr-u2bY-3apzNozxNVmkto_TGGZqpSi0LpUuhPrv-gCUPzsU</recordid><startdate>20171114</startdate><enddate>20171114</enddate><creator>Dabkowski, Mieczyslaw K</creator><creator>Przytycki, Jozef H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171114</creationdate><title>Catalan States of Lattice Crossing: Application of Plucking Polynomial</title><author>Dabkowski, Mieczyslaw K ; Przytycki, Jozef H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20766836703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Plucking</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Dabkowski, Mieczyslaw K</creatorcontrib><creatorcontrib>Przytycki, Jozef H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabkowski, Mieczyslaw K</au><au>Przytycki, Jozef H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Catalan States of Lattice Crossing: Application of Plucking Polynomial</atitle><jtitle>arXiv.org</jtitle><date>2017-11-14</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>For a Catalan state \(C\) of a lattice crossing \(L\left( m,n\right) \) with no returns on one side, we find its coefficient \(C\left( A\right) \) in the Relative Kauffman Bracket Skein Module expansion of \(L\left( m,n\right) \). We show, in particular, that \(C\left( A\right) \) can be found using the plucking polynomial of a rooted tree with a delay function associated to \(C\). Furthermore, for \(C\) with returns on one side only, we prove that \(C\left( A\right) \) is a product of Gaussian polynomials, and its coefficients form a unimodal sequence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076683670
source Free E- Journals
subjects Plucking
Polynomials
title Catalan States of Lattice Crossing: Application of Plucking Polynomial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Catalan%20States%20of%20Lattice%20Crossing:%20Application%20of%20Plucking%20Polynomial&rft.jtitle=arXiv.org&rft.au=Dabkowski,%20Mieczyslaw%20K&rft.date=2017-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076683670%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076683670&rft_id=info:pmid/&rfr_iscdi=true