Catalan States of Lattice Crossing: Application of Plucking Polynomial
For a Catalan state \(C\) of a lattice crossing \(L\left( m,n\right) \) with no returns on one side, we find its coefficient \(C\left( A\right) \) in the Relative Kauffman Bracket Skein Module expansion of \(L\left( m,n\right) \). We show, in particular, that \(C\left( A\right) \) can be found using...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a Catalan state \(C\) of a lattice crossing \(L\left( m,n\right) \) with no returns on one side, we find its coefficient \(C\left( A\right) \) in the Relative Kauffman Bracket Skein Module expansion of \(L\left( m,n\right) \). We show, in particular, that \(C\left( A\right) \) can be found using the plucking polynomial of a rooted tree with a delay function associated to \(C\). Furthermore, for \(C\) with returns on one side only, we prove that \(C\left( A\right) \) is a product of Gaussian polynomials, and its coefficients form a unimodal sequence. |
---|---|
ISSN: | 2331-8422 |