Orthogonal foliations on riemannian manifolds
In this work, we find an equation that relates the Ricci curvature of a riemannian manifold \(M\) and the second fundamental forms of two orthogonal foliations of complementary dimensions, \(\mathcal{F}\) and \(\mathcal{F}^{\bot}\), defined on \(M\). Using this equation, we show a sufficient conditi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we find an equation that relates the Ricci curvature of a riemannian manifold \(M\) and the second fundamental forms of two orthogonal foliations of complementary dimensions, \(\mathcal{F}\) and \(\mathcal{F}^{\bot}\), defined on \(M\). Using this equation, we show a sufficient condition for the manifold M to be locally a riemannian product of the leaves of \(\mathcal{F}\) and \(\mathcal{F}^{\bot}\), if one of the foliations is totally umbilical. We also prove an integral formula for such foliations. |
---|---|
ISSN: | 2331-8422 |