Thermal stress analysis of in-plane two-directional functionally graded plates subjected to in-plane edge heat fluxes

This study investigates the thermal stress and deformation states of bi-directional functionally graded clamped plates subjected to constant in-plane heat fluxes along two ceramic edges. The material properties of the functionally graded plates were assumed to vary with a power law along two in-plan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2018-08, Vol.232 (8), p.693-716
Hauptverfasser: Apalak, MK, Demirbas, MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the thermal stress and deformation states of bi-directional functionally graded clamped plates subjected to constant in-plane heat fluxes along two ceramic edges. The material properties of the functionally graded plates were assumed to vary with a power law along two in-plane directions not through the plate thickness direction. The spatial derivatives of thermal and mechanical properties of the material composition were considered, and the effects of the bi-directional composition variations and spatial derivative terms on the displacement, strain and stress distributions were also investigated. The heat conduction and Navier equations describing the two-dimensional thermo-elastic problem were discretized using finite-difference method, and the set of linear equations were solved using the pseudo singular value method. The compositional gradient exponents and the spatial derivatives of thermal and mechanical properties of the material composition were observed to play an important role especially on the heat transfer durations, the displacement and strain distributions, but had a minor effect on the temperature and stress distributions.
ISSN:1464-4207
2041-3076
DOI:10.1177/1464420716643857