Quasispheres and metric doubling measures

Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere \(X\) is a quasisphere if and only if \(X\) is linearly locally connected and carries a weak metric doubling measure, i.e., a measure that deforms the metric on \(X\) without much shrinking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-10
Hauptverfasser: Lohvansuu, Atte, Rajala, Kai, Rasimus, Martti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere \(X\) is a quasisphere if and only if \(X\) is linearly locally connected and carries a weak metric doubling measure, i.e., a measure that deforms the metric on \(X\) without much shrinking.
ISSN:2331-8422