Polycyclic aromatic hydrocarbon diol epoxides increase cytosolic Ca(2+) of airway epithelial cells
Polycyclic aromatic hydrocarbons (PAHs) increase cytosolic Ca(2+) concentration ([Ca(2+)](i)) in lymphocytes and mammary epithelial cells, but little is known regarding their effects on [Ca(2+)](i) in airway epithelium. We hypothesized that benzo[a]pyrene (BP) and/or anti-7,8-dihydroxy-9,10-epoxy-7,...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory cell and molecular biology 2001-07, Vol.25 (1), p.78 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polycyclic aromatic hydrocarbons (PAHs) increase cytosolic Ca(2+) concentration ([Ca(2+)](i)) in lymphocytes and mammary epithelial cells, but little is known regarding their effects on [Ca(2+)](i) in airway epithelium. We hypothesized that benzo[a]pyrene (BP) and/or anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), a carcinogenic BP metabolite, increases [Ca(2+)](i) in untransformed human small airway epithelial (SAE) cells and that their effects on [Ca(2+)](i) are directly proportional to carcinogenicity. SAE [Ca(2+)](i) was determined by a ratiometric digital Ca(2+) imaging system. BPDE increased SAE [Ca(2+)](i) within 20 s in media with high (1 mM) and low (10 nM) Ca(2+) at a threshold concentration of 0.2 nM. Elevation of [Ca(2+)](i) persisted longer with high Ca(2+). Neither BP nor solvent altered [Ca(2+)](i). Thapsigargin and inositol 1,4,5- phosphate receptor (InsP(3)R) antagonists inhibited this BPDE action with low Ca(2+). We conclude that BPDE but not BP increases [Ca(2+)](i) partly by mobilizing Ca(2+) from cytosolic stores through an InsP(3)R. The most potent carcinogenic PAH diol epoxide increased in SAE [Ca(2+)](i) at the lowest threshold concentration, suggesting that carcinogenicity is directly proportional to the action of PAHs on SAE [Ca(2+)](i). Short-term exposure to BPDE 36 to 48 h before the study rendered SAE cells less sensitive to BPDE, suggesting that BPDE may also induce persistent changes in Ca(2+) signaling pathways. |
---|---|
ISSN: | 1044-1549 |
DOI: | 10.1165/ajrcmb.25.1.4405 |