Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function
We investigate qualitative and quantitative behavior of a solution of the mathematical model for pricing American style of perpetual put options. We assume the option price is a solution to the stationary generalized Black-Scholes equation in which the volatility function may depend on the second de...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate qualitative and quantitative behavior of a solution of the mathematical model for pricing American style of perpetual put options. We assume the option price is a solution to the stationary generalized Black-Scholes equation in which the volatility function may depend on the second derivative of the option price itself. We prove existence and uniqueness of a solution to the free boundary problem. We derive a single implicit equation for the free boundary position and the closed form formula for the option price. It is a generalization of the well-known explicit closed form solution derived by Merton for the case of a constant volatility. We also present results of numerical computations of the free boundary position, option price and their dependence on model parameters. |
---|---|
ISSN: | 2331-8422 |