A note on operator tuples which are \((m,p)\)-isometric as well as \((\mu,\infty)\)-isometric

We show that if a tuple of commuting, bounded linear operators \((T_1,...,T_d) \in B(X)^d\) is both an \((m,p)\)-isometry and a \((\mu,\infty)\)-isometry, then the tuple \((T_1^m,...,T_d^m)\) is a \((1,p)\)-isometry. We further prove some additional properties of the operators \(T_1,...,T_d\) and sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-07
1. Verfasser: Hoffmann, Philipp H W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if a tuple of commuting, bounded linear operators \((T_1,...,T_d) \in B(X)^d\) is both an \((m,p)\)-isometry and a \((\mu,\infty)\)-isometry, then the tuple \((T_1^m,...,T_d^m)\) is a \((1,p)\)-isometry. We further prove some additional properties of the operators \(T_1,...,T_d\) and show a stronger result in the case of a commuting pair \((T_1,T_2)\).
ISSN:2331-8422