A linear Uzawa-type FEM–BEM solver for nonlinear transmission problems

We propose a fully discrete Uzawa-type iteration for the Johnson–Nédélec formulation of a Laplace-type transmission problem with possible (strongly monotone) nonlinearity in the interior domain. In each step, we sequentially solve one BEM for the weakly-singular integral equation associated with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2018-04, Vol.75 (8), p.2678-2697
Hauptverfasser: Führer, Thomas, Praetorius, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a fully discrete Uzawa-type iteration for the Johnson–Nédélec formulation of a Laplace-type transmission problem with possible (strongly monotone) nonlinearity in the interior domain. In each step, we sequentially solve one BEM for the weakly-singular integral equation associated with the Laplace-operator and one FEM for the linear Yukawa equation. In particular, the nonlinearity is only evaluated to build the right-hand side of the Yukawa equation. The algorithm includes the inexact solution of the BEM/FEM part by a preconditioned CG method. We prove that the proposed method leads to linear convergence with respect to the number of Uzawa iterations. Moreover, while the current analysis of a direct FEM–BEM discretization of the Johnson–Nédélec formulation requires some restrictions on the ellipticity (resp. strong monotonicity constant) in the interior domain, our Uzawa-type solver avoids such assumptions.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2017.12.035