The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method

The Kansa method with the Multiquadric-radial basis function (MQ-RBF) is inherently meshfree and can achieve an exponential convergence rate if the optimal shape parameter is available. However, it is not an easy task to obtain the optimal shape parameter for complex problems whose analytical soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2018-04, Vol.75 (8), p.2942-2954
Hauptverfasser: Chen, Wen, Hong, Yongxing, Lin, Ji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2954
container_issue 8
container_start_page 2942
container_title Computers & mathematics with applications (1987)
container_volume 75
creator Chen, Wen
Hong, Yongxing
Lin, Ji
description The Kansa method with the Multiquadric-radial basis function (MQ-RBF) is inherently meshfree and can achieve an exponential convergence rate if the optimal shape parameter is available. However, it is not an easy task to obtain the optimal shape parameter for complex problems whose analytical solution is often a priori unknown. This has long been a bottleneck for the MQ-Kansa method application to practical problems. In this paper, we present a novel sample solution approach (SSA) for achieving a reasonably good shape parameter of the MQ-RBF in the Kansa method for the solution of problems whose analytical solution is unknown. The basic assumption behind the SSA is that the optimal shape parameter is considered to be largely depended on the shape of computational domain, the type of the boundary conditions, the number and distribution of nodes, and the governing equation. In the procedure of the SSA, we set up a pseudo-problem as the sample solution whose solution is known. It is not difficult to obtain the optimal parameter of the MQ-RBF in the numerical solution of the pseudo-problem. The SSA suggests that the optimal shape parameter of the pseudo-problem can also achieve an approximately optimal accuracy in the solution of the original problem. Numerical examples and comparisons are provided to verify the proposed SSA in terms of accuracy and stability in solving homogeneous problems and non-homogeneous modified Helmholtz problems in several complex domains even using chaotic distribution of collocation points.
doi_str_mv 10.1016/j.camwa.2018.01.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2076186086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122118300397</els_id><sourcerecordid>2076186086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-bad4086e8959bbbf9b4727d262aec746aea87fc9b62c6d45539454241914603d3</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwCVgsMSfYjus4AwOq-CdALGW2XmxHdZXEqZ2AWPjsuC0DE9Mb7n73dIfQJSU5JVRcb3IN3SfkjFCZE5oTVhyhGZVlkZVCyGM0I7KSGWWMnqKzGDeEEF4wMkPfq7XFEbqhTce30-h8j2EYgge9xo0P2NjRhs71sJd8g8dE-GF0HbQ4rmGweIAA3c6GXb-XX6d2dNsJTHAaN1Ov_7LP0EfAyb_25hydNNBGe_F75-j9_m61fMxe3h6elrcvmS5KMWY1GE6ksLJaVHVdN1XNS1YaJhhYXXIBFmTZ6KoWTAvDF4ui4gvOOK0oF6QwxRxdHXJTse1k46g2fgp9eqkYKQWVIsUnV3Fw6eBjDLZRQ0g1w5eiRO2GVhu1H1rthlaEqjR0om4OlE0FPpwNKmpne22NC1aPynj3L_8DgeSJZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076186086</pqid></control><display><type>article</type><title>The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Wen ; Hong, Yongxing ; Lin, Ji</creator><creatorcontrib>Chen, Wen ; Hong, Yongxing ; Lin, Ji</creatorcontrib><description>The Kansa method with the Multiquadric-radial basis function (MQ-RBF) is inherently meshfree and can achieve an exponential convergence rate if the optimal shape parameter is available. However, it is not an easy task to obtain the optimal shape parameter for complex problems whose analytical solution is often a priori unknown. This has long been a bottleneck for the MQ-Kansa method application to practical problems. In this paper, we present a novel sample solution approach (SSA) for achieving a reasonably good shape parameter of the MQ-RBF in the Kansa method for the solution of problems whose analytical solution is unknown. The basic assumption behind the SSA is that the optimal shape parameter is considered to be largely depended on the shape of computational domain, the type of the boundary conditions, the number and distribution of nodes, and the governing equation. In the procedure of the SSA, we set up a pseudo-problem as the sample solution whose solution is known. It is not difficult to obtain the optimal parameter of the MQ-RBF in the numerical solution of the pseudo-problem. The SSA suggests that the optimal shape parameter of the pseudo-problem can also achieve an approximately optimal accuracy in the solution of the original problem. Numerical examples and comparisons are provided to verify the proposed SSA in terms of accuracy and stability in solving homogeneous problems and non-homogeneous modified Helmholtz problems in several complex domains even using chaotic distribution of collocation points.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2018.01.023</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Basis functions ; Kansa method ; Mathematical functions ; Mathematical models ; Meshless methods ; Multiquadric ; Parameter estimation ; Parameters ; Partial differential equations ; Radial basis function ; Sample solution approach ; Shape parameter</subject><ispartof>Computers &amp; mathematics with applications (1987), 2018-04, Vol.75 (8), p.2942-2954</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-bad4086e8959bbbf9b4727d262aec746aea87fc9b62c6d45539454241914603d3</citedby><cites>FETCH-LOGICAL-c376t-bad4086e8959bbbf9b4727d262aec746aea87fc9b62c6d45539454241914603d3</cites><orcidid>0000-0001-5678-4949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122118300397$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Hong, Yongxing</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><title>The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method</title><title>Computers &amp; mathematics with applications (1987)</title><description>The Kansa method with the Multiquadric-radial basis function (MQ-RBF) is inherently meshfree and can achieve an exponential convergence rate if the optimal shape parameter is available. However, it is not an easy task to obtain the optimal shape parameter for complex problems whose analytical solution is often a priori unknown. This has long been a bottleneck for the MQ-Kansa method application to practical problems. In this paper, we present a novel sample solution approach (SSA) for achieving a reasonably good shape parameter of the MQ-RBF in the Kansa method for the solution of problems whose analytical solution is unknown. The basic assumption behind the SSA is that the optimal shape parameter is considered to be largely depended on the shape of computational domain, the type of the boundary conditions, the number and distribution of nodes, and the governing equation. In the procedure of the SSA, we set up a pseudo-problem as the sample solution whose solution is known. It is not difficult to obtain the optimal parameter of the MQ-RBF in the numerical solution of the pseudo-problem. The SSA suggests that the optimal shape parameter of the pseudo-problem can also achieve an approximately optimal accuracy in the solution of the original problem. Numerical examples and comparisons are provided to verify the proposed SSA in terms of accuracy and stability in solving homogeneous problems and non-homogeneous modified Helmholtz problems in several complex domains even using chaotic distribution of collocation points.</description><subject>Basis functions</subject><subject>Kansa method</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Meshless methods</subject><subject>Multiquadric</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Radial basis function</subject><subject>Sample solution approach</subject><subject>Shape parameter</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwCVgsMSfYjus4AwOq-CdALGW2XmxHdZXEqZ2AWPjsuC0DE9Mb7n73dIfQJSU5JVRcb3IN3SfkjFCZE5oTVhyhGZVlkZVCyGM0I7KSGWWMnqKzGDeEEF4wMkPfq7XFEbqhTce30-h8j2EYgge9xo0P2NjRhs71sJd8g8dE-GF0HbQ4rmGweIAA3c6GXb-XX6d2dNsJTHAaN1Ov_7LP0EfAyb_25hydNNBGe_F75-j9_m61fMxe3h6elrcvmS5KMWY1GE6ksLJaVHVdN1XNS1YaJhhYXXIBFmTZ6KoWTAvDF4ui4gvOOK0oF6QwxRxdHXJTse1k46g2fgp9eqkYKQWVIsUnV3Fw6eBjDLZRQ0g1w5eiRO2GVhu1H1rthlaEqjR0om4OlE0FPpwNKmpne22NC1aPynj3L_8DgeSJZA</recordid><startdate>20180415</startdate><enddate>20180415</enddate><creator>Chen, Wen</creator><creator>Hong, Yongxing</creator><creator>Lin, Ji</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5678-4949</orcidid></search><sort><creationdate>20180415</creationdate><title>The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method</title><author>Chen, Wen ; Hong, Yongxing ; Lin, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-bad4086e8959bbbf9b4727d262aec746aea87fc9b62c6d45539454241914603d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basis functions</topic><topic>Kansa method</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Meshless methods</topic><topic>Multiquadric</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Radial basis function</topic><topic>Sample solution approach</topic><topic>Shape parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Hong, Yongxing</creatorcontrib><creatorcontrib>Lin, Ji</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wen</au><au>Hong, Yongxing</au><au>Lin, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2018-04-15</date><risdate>2018</risdate><volume>75</volume><issue>8</issue><spage>2942</spage><epage>2954</epage><pages>2942-2954</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The Kansa method with the Multiquadric-radial basis function (MQ-RBF) is inherently meshfree and can achieve an exponential convergence rate if the optimal shape parameter is available. However, it is not an easy task to obtain the optimal shape parameter for complex problems whose analytical solution is often a priori unknown. This has long been a bottleneck for the MQ-Kansa method application to practical problems. In this paper, we present a novel sample solution approach (SSA) for achieving a reasonably good shape parameter of the MQ-RBF in the Kansa method for the solution of problems whose analytical solution is unknown. The basic assumption behind the SSA is that the optimal shape parameter is considered to be largely depended on the shape of computational domain, the type of the boundary conditions, the number and distribution of nodes, and the governing equation. In the procedure of the SSA, we set up a pseudo-problem as the sample solution whose solution is known. It is not difficult to obtain the optimal parameter of the MQ-RBF in the numerical solution of the pseudo-problem. The SSA suggests that the optimal shape parameter of the pseudo-problem can also achieve an approximately optimal accuracy in the solution of the original problem. Numerical examples and comparisons are provided to verify the proposed SSA in terms of accuracy and stability in solving homogeneous problems and non-homogeneous modified Helmholtz problems in several complex domains even using chaotic distribution of collocation points.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2018.01.023</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5678-4949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2018-04, Vol.75 (8), p.2942-2954
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2076186086
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Basis functions
Kansa method
Mathematical functions
Mathematical models
Meshless methods
Multiquadric
Parameter estimation
Parameters
Partial differential equations
Radial basis function
Sample solution approach
Shape parameter
title The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20sample%20solution%20approach%20for%20determination%20of%20the%20optimal%20shape%20parameter%20in%20the%20Multiquadric%20function%20of%20the%20Kansa%20method&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Chen,%20Wen&rft.date=2018-04-15&rft.volume=75&rft.issue=8&rft.spage=2942&rft.epage=2954&rft.pages=2942-2954&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2018.01.023&rft_dat=%3Cproquest_cross%3E2076186086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076186086&rft_id=info:pmid/&rft_els_id=S0898122118300397&rfr_iscdi=true