The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method

The Kansa method with the Multiquadric-radial basis function (MQ-RBF) is inherently meshfree and can achieve an exponential convergence rate if the optimal shape parameter is available. However, it is not an easy task to obtain the optimal shape parameter for complex problems whose analytical soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2018-04, Vol.75 (8), p.2942-2954
Hauptverfasser: Chen, Wen, Hong, Yongxing, Lin, Ji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Kansa method with the Multiquadric-radial basis function (MQ-RBF) is inherently meshfree and can achieve an exponential convergence rate if the optimal shape parameter is available. However, it is not an easy task to obtain the optimal shape parameter for complex problems whose analytical solution is often a priori unknown. This has long been a bottleneck for the MQ-Kansa method application to practical problems. In this paper, we present a novel sample solution approach (SSA) for achieving a reasonably good shape parameter of the MQ-RBF in the Kansa method for the solution of problems whose analytical solution is unknown. The basic assumption behind the SSA is that the optimal shape parameter is considered to be largely depended on the shape of computational domain, the type of the boundary conditions, the number and distribution of nodes, and the governing equation. In the procedure of the SSA, we set up a pseudo-problem as the sample solution whose solution is known. It is not difficult to obtain the optimal parameter of the MQ-RBF in the numerical solution of the pseudo-problem. The SSA suggests that the optimal shape parameter of the pseudo-problem can also achieve an approximately optimal accuracy in the solution of the original problem. Numerical examples and comparisons are provided to verify the proposed SSA in terms of accuracy and stability in solving homogeneous problems and non-homogeneous modified Helmholtz problems in several complex domains even using chaotic distribution of collocation points.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2018.01.023