Rationality of Hilbert series in noncommutative invariant theory
It is a fundamental result in commutative algebra and invariant theory that a finitely generated graded module over a commutative finitely generated graded algebra has rational Hilbert series, and consequently the Hilbert series of the algebra of polynomial invariants of a group of linear transforma...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Domokos, M Drensky, V |
description | It is a fundamental result in commutative algebra and invariant theory that a finitely generated graded module over a commutative finitely generated graded algebra has rational Hilbert series, and consequently the Hilbert series of the algebra of polynomial invariants of a group of linear transformations is rational, whenever this algebra is finitely generated. This basic principle is applied here to prove rationality of Hilbert series of algebras of invariants that are neither commutative nor finitely generated. Our main focus is on linear groups acting on certain factor algebras of the tensor algebra that arise naturally in the theory of polynomial identities. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076176639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076176639</sourcerecordid><originalsourceid>FETCH-proquest_journals_20761766393</originalsourceid><addsrcrecordid>eNqNjUEKwjAQAIMgWLR_CHgupIlN9SaI0rN4L7FsMaXNanZb6O_twQd4GhgGZiUSbUyeHQ9ab0RK1CmltC11UZhEnO-OPQbXe54ltrLy_RMiS4LogaQPMmBocBhGXsIJFjO56F1gyS_AOO_EunU9QfrjVuxv18elyt4RPyMQ1x2OcRlQrVVp89JaczL_VV-bJTn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076176639</pqid></control><display><type>article</type><title>Rationality of Hilbert series in noncommutative invariant theory</title><source>Free E- Journals</source><creator>Domokos, M ; Drensky, V</creator><creatorcontrib>Domokos, M ; Drensky, V</creatorcontrib><description>It is a fundamental result in commutative algebra and invariant theory that a finitely generated graded module over a commutative finitely generated graded algebra has rational Hilbert series, and consequently the Hilbert series of the algebra of polynomial invariants of a group of linear transformations is rational, whenever this algebra is finitely generated. This basic principle is applied here to prove rationality of Hilbert series of algebras of invariants that are neither commutative nor finitely generated. Our main focus is on linear groups acting on certain factor algebras of the tensor algebra that arise naturally in the theory of polynomial identities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Invariants ; Linear transformations ; Mathematical analysis ; Polynomials ; Rationality ; Tensors</subject><ispartof>arXiv.org, 2017-08</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Domokos, M</creatorcontrib><creatorcontrib>Drensky, V</creatorcontrib><title>Rationality of Hilbert series in noncommutative invariant theory</title><title>arXiv.org</title><description>It is a fundamental result in commutative algebra and invariant theory that a finitely generated graded module over a commutative finitely generated graded algebra has rational Hilbert series, and consequently the Hilbert series of the algebra of polynomial invariants of a group of linear transformations is rational, whenever this algebra is finitely generated. This basic principle is applied here to prove rationality of Hilbert series of algebras of invariants that are neither commutative nor finitely generated. Our main focus is on linear groups acting on certain factor algebras of the tensor algebra that arise naturally in the theory of polynomial identities.</description><subject>Algebra</subject><subject>Invariants</subject><subject>Linear transformations</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Rationality</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAQAIMgWLR_CHgupIlN9SaI0rN4L7FsMaXNanZb6O_twQd4GhgGZiUSbUyeHQ9ab0RK1CmltC11UZhEnO-OPQbXe54ltrLy_RMiS4LogaQPMmBocBhGXsIJFjO56F1gyS_AOO_EunU9QfrjVuxv18elyt4RPyMQ1x2OcRlQrVVp89JaczL_VV-bJTn0</recordid><startdate>20170821</startdate><enddate>20170821</enddate><creator>Domokos, M</creator><creator>Drensky, V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170821</creationdate><title>Rationality of Hilbert series in noncommutative invariant theory</title><author>Domokos, M ; Drensky, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20761766393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Invariants</topic><topic>Linear transformations</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Rationality</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Domokos, M</creatorcontrib><creatorcontrib>Drensky, V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domokos, M</au><au>Drensky, V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rationality of Hilbert series in noncommutative invariant theory</atitle><jtitle>arXiv.org</jtitle><date>2017-08-21</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>It is a fundamental result in commutative algebra and invariant theory that a finitely generated graded module over a commutative finitely generated graded algebra has rational Hilbert series, and consequently the Hilbert series of the algebra of polynomial invariants of a group of linear transformations is rational, whenever this algebra is finitely generated. This basic principle is applied here to prove rationality of Hilbert series of algebras of invariants that are neither commutative nor finitely generated. Our main focus is on linear groups acting on certain factor algebras of the tensor algebra that arise naturally in the theory of polynomial identities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076176639 |
source | Free E- Journals |
subjects | Algebra Invariants Linear transformations Mathematical analysis Polynomials Rationality Tensors |
title | Rationality of Hilbert series in noncommutative invariant theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rationality%20of%20Hilbert%20series%20in%20noncommutative%20invariant%20theory&rft.jtitle=arXiv.org&rft.au=Domokos,%20M&rft.date=2017-08-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076176639%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076176639&rft_id=info:pmid/&rfr_iscdi=true |