Rationality of Hilbert series in noncommutative invariant theory

It is a fundamental result in commutative algebra and invariant theory that a finitely generated graded module over a commutative finitely generated graded algebra has rational Hilbert series, and consequently the Hilbert series of the algebra of polynomial invariants of a group of linear transforma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-08
Hauptverfasser: Domokos, M, Drensky, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is a fundamental result in commutative algebra and invariant theory that a finitely generated graded module over a commutative finitely generated graded algebra has rational Hilbert series, and consequently the Hilbert series of the algebra of polynomial invariants of a group of linear transformations is rational, whenever this algebra is finitely generated. This basic principle is applied here to prove rationality of Hilbert series of algebras of invariants that are neither commutative nor finitely generated. Our main focus is on linear groups acting on certain factor algebras of the tensor algebra that arise naturally in the theory of polynomial identities.
ISSN:2331-8422