Triple covers and a non-simply connected surface spanning an elongated tetrahedron and beating the cone
By using a suitable triple cover we show how to possibly model the construction of a minimal surface with positive genus spanning all six edges of a tetrahedron, working in the space of BV functions and interpreting the film as the boundary of a Caccioppoli set in the covering space. After a questio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using a suitable triple cover we show how to possibly model the construction of a minimal surface with positive genus spanning all six edges of a tetrahedron, working in the space of BV functions and interpreting the film as the boundary of a Caccioppoli set in the covering space. After a question raised by R. Hardt in the late 1980's, it seems common opinion that an area-minimizing surface of this sort does not exist for a regular tetrahedron, although a proof of this fact is still missing. In this paper we show that there exists a surface of positive genus spanning the boundary of an elongated tetrahedron and having area strictly less than the area of the conic surface. |
---|---|
ISSN: | 2331-8422 |