The \(m\)-functions of discrete Schrödinger operators are sparse compared to those for Jacobi operators
We explore the sparsity of Weyl-Titchmarsh \(m\)-functions of discrete Schr\"odinger operators. Due to this, the set of their \(m\)-functions cannot be dense on the set of those for Jacobi operators. All this reveals why an inverse spectral theory for discrete Schr\"odinger operators via t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore the sparsity of Weyl-Titchmarsh \(m\)-functions of discrete Schr\"odinger operators. Due to this, the set of their \(m\)-functions cannot be dense on the set of those for Jacobi operators. All this reveals why an inverse spectral theory for discrete Schr\"odinger operators via their spectral measures should be difficult. To obtain the result, de Branges theory of canonical systems is applied to work on them, instead of Weyl-Titchmarsh \(m\)-functions. |
---|---|
ISSN: | 2331-8422 |