Name-free combinators for concurrency

Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-04
Hauptverfasser: Lucius Gregory Meredith, Stay, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lucius Gregory Meredith
Stay, Michael
description Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. We also show that multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076052153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076052153</sourcerecordid><originalsourceid>FETCH-proquest_journals_20760521533</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9UvMTdVNK0pNVUjOz03KzEssyS8qVkjLLwLy85JLi4pS85IreRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjA3MzA1MjQ1NiYOFUAFmIvKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076052153</pqid></control><display><type>article</type><title>Name-free combinators for concurrency</title><source>Free E- Journals</source><creator>Lucius Gregory Meredith ; Stay, Michael</creator><creatorcontrib>Lucius Gregory Meredith ; Stay, Michael</creatorcontrib><description>Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. We also show that multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Calculus ; Concurrency ; Logic programming ; Names ; Semantics</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lucius Gregory Meredith</creatorcontrib><creatorcontrib>Stay, Michael</creatorcontrib><title>Name-free combinators for concurrency</title><title>arXiv.org</title><description>Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. We also show that multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus.</description><subject>Calculus</subject><subject>Concurrency</subject><subject>Logic programming</subject><subject>Names</subject><subject>Semantics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9UvMTdVNK0pNVUjOz03KzEssyS8qVkjLLwLy85JLi4pS85IreRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjA3MzA1MjQ1NiYOFUAFmIvKw</recordid><startdate>20190419</startdate><enddate>20190419</enddate><creator>Lucius Gregory Meredith</creator><creator>Stay, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190419</creationdate><title>Name-free combinators for concurrency</title><author>Lucius Gregory Meredith ; Stay, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20760521533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calculus</topic><topic>Concurrency</topic><topic>Logic programming</topic><topic>Names</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lucius Gregory Meredith</creatorcontrib><creatorcontrib>Stay, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucius Gregory Meredith</au><au>Stay, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Name-free combinators for concurrency</atitle><jtitle>arXiv.org</jtitle><date>2019-04-19</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. We also show that multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076052153
source Free E- Journals
subjects Calculus
Concurrency
Logic programming
Names
Semantics
title Name-free combinators for concurrency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Name-free%20combinators%20for%20concurrency&rft.jtitle=arXiv.org&rft.au=Lucius%20Gregory%20Meredith&rft.date=2019-04-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076052153%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076052153&rft_id=info:pmid/&rfr_iscdi=true