Name-free combinators for concurrency
Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lucius Gregory Meredith Stay, Michael |
description | Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. We also show that multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076052153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076052153</sourcerecordid><originalsourceid>FETCH-proquest_journals_20760521533</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9UvMTdVNK0pNVUjOz03KzEssyS8qVkjLLwLy85JLi4pS85IreRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjA3MzA1MjQ1NiYOFUAFmIvKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076052153</pqid></control><display><type>article</type><title>Name-free combinators for concurrency</title><source>Free E- Journals</source><creator>Lucius Gregory Meredith ; Stay, Michael</creator><creatorcontrib>Lucius Gregory Meredith ; Stay, Michael</creatorcontrib><description>Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. We also show that multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Calculus ; Concurrency ; Logic programming ; Names ; Semantics</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lucius Gregory Meredith</creatorcontrib><creatorcontrib>Stay, Michael</creatorcontrib><title>Name-free combinators for concurrency</title><title>arXiv.org</title><description>Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. We also show that multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus.</description><subject>Calculus</subject><subject>Concurrency</subject><subject>Logic programming</subject><subject>Names</subject><subject>Semantics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9UvMTdVNK0pNVUjOz03KzEssyS8qVkjLLwLy85JLi4pS85IreRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjA3MzA1MjQ1NiYOFUAFmIvKw</recordid><startdate>20190419</startdate><enddate>20190419</enddate><creator>Lucius Gregory Meredith</creator><creator>Stay, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190419</creationdate><title>Name-free combinators for concurrency</title><author>Lucius Gregory Meredith ; Stay, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20760521533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calculus</topic><topic>Concurrency</topic><topic>Logic programming</topic><topic>Names</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lucius Gregory Meredith</creatorcontrib><creatorcontrib>Stay, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucius Gregory Meredith</au><au>Stay, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Name-free combinators for concurrency</atitle><jtitle>arXiv.org</jtitle><date>2019-04-19</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. We also show that multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076052153 |
source | Free E- Journals |
subjects | Calculus Concurrency Logic programming Names Semantics |
title | Name-free combinators for concurrency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Name-free%20combinators%20for%20concurrency&rft.jtitle=arXiv.org&rft.au=Lucius%20Gregory%20Meredith&rft.date=2019-04-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076052153%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076052153&rft_id=info:pmid/&rfr_iscdi=true |