Name-free combinators for concurrency
Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the "new" operator to bind names. We modify Yoshida's combinators by replacing "new" and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. We also show that multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus. |
---|---|
ISSN: | 2331-8422 |