The Cauchy-Schwarz Inequality in Complex Normed Spaces

We introduce a product in all complex normed vector spaces, which generalizes the inner product of complex inner product spaces. Naturally the question occurs whether the Cauchy-Schwarz inequality is fulfilled. We provide a positive answer. This also yields a new proof of the Cauchy-Schwarz inequali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-07
1. Verfasser: Volker Wilhelm Thürey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a product in all complex normed vector spaces, which generalizes the inner product of complex inner product spaces. Naturally the question occurs whether the Cauchy-Schwarz inequality is fulfilled. We provide a positive answer. This also yields a new proof of the Cauchy-Schwarz inequality in complex inner product spaces, which does not rely on the linearity of the inner product. The proof depends only on the norm in the vector space. Further, we present some properties of the generalized product.
ISSN:2331-8422