Learning to Acquire Information

We consider the problem of diagnosis where a set of simple observations are used to infer a potentially complex hidden hypothesis. Finding the optimal subset of observations is intractable in general, thus we focus on the problem of active diagnosis, where the agent selects the next most-informative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-07
Hauptverfasser: Pu, Yewen, Kaelbling, Leslie P, Solar-Lezama, Armando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of diagnosis where a set of simple observations are used to infer a potentially complex hidden hypothesis. Finding the optimal subset of observations is intractable in general, thus we focus on the problem of active diagnosis, where the agent selects the next most-informative observation based on the results of previous observations. We show that under the assumption of uniform observation entropy, one can build an implication model which directly predicts the outcome of the potential next observation conditioned on the results of past observations, and selects the observation with the maximum entropy. This approach enjoys reduced computation complexity by bypassing the complicated hypothesis space, and can be trained on observation data alone, learning how to query without knowledge of the hidden hypothesis.
ISSN:2331-8422