Structure of Multi-Meron Knot Action
We consider the structure of multi-meron knot action in the Yang-Mills theory and in the CP^1 Ginzburg-Landau model. Self-dual equations have been obtained without identifying orientations in the space-time and in the color space. The dependence of the energy bounds on topological parameters of cohe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2002-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the structure of multi-meron knot action in the Yang-Mills theory and in the CP^1 Ginzburg-Landau model. Self-dual equations have been obtained without identifying orientations in the space-time and in the color space. The dependence of the energy bounds on topological parameters of coherent states in planar systems is also discussed. In particular, it is shown that a characteristic size of a knot in the Faddeev-Niemi model is determined by the Hopf invariant. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0210295 |