Structure of Multi-Meron Knot Action

We consider the structure of multi-meron knot action in the Yang-Mills theory and in the CP^1 Ginzburg-Landau model. Self-dual equations have been obtained without identifying orientations in the space-time and in the color space. The dependence of the energy bounds on topological parameters of cohe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2002-10
Hauptverfasser: Isaev, L S, Protogenov, A P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the structure of multi-meron knot action in the Yang-Mills theory and in the CP^1 Ginzburg-Landau model. Self-dual equations have been obtained without identifying orientations in the space-time and in the color space. The dependence of the energy bounds on topological parameters of coherent states in planar systems is also discussed. In particular, it is shown that a characteristic size of a knot in the Faddeev-Niemi model is determined by the Hopf invariant.
ISSN:2331-8422
DOI:10.48550/arxiv.0210295