A boundary preserving numerical scheme for the Wright-Fisher model

We are interested in the numerical approximation of non-linear stochastic differential equations (SDEs) with solution in a certain domain. Our goal is to construct explicit numerical schemes that preserve that structure. We generalize the semi-discrete method \emph{Halidias N. and Stamatiou I.S. (20...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-06
1. Verfasser: Stamatiou, Ioannis S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are interested in the numerical approximation of non-linear stochastic differential equations (SDEs) with solution in a certain domain. Our goal is to construct explicit numerical schemes that preserve that structure. We generalize the semi-discrete method \emph{Halidias N. and Stamatiou I.S. (2016), On the numerical solution of some non-linear stochastic differential equations using the Semi-Discrete method, Computational Methods in Applied Mathematics,16(1)} and propose a numerical scheme, for which we prove a strong convergence result, to a class of SDEs that appears in population dynamics and ion channel dynamics within cardiac and neuronal cells. We furthermore extend our scheme to a multidimensional case.
ISSN:2331-8422