A boundary preserving numerical scheme for the Wright-Fisher model
We are interested in the numerical approximation of non-linear stochastic differential equations (SDEs) with solution in a certain domain. Our goal is to construct explicit numerical schemes that preserve that structure. We generalize the semi-discrete method \emph{Halidias N. and Stamatiou I.S. (20...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We are interested in the numerical approximation of non-linear stochastic differential equations (SDEs) with solution in a certain domain. Our goal is to construct explicit numerical schemes that preserve that structure. We generalize the semi-discrete method \emph{Halidias N. and Stamatiou I.S. (2016), On the numerical solution of some non-linear stochastic differential equations using the Semi-Discrete method, Computational Methods in Applied Mathematics,16(1)} and propose a numerical scheme, for which we prove a strong convergence result, to a class of SDEs that appears in population dynamics and ion channel dynamics within cardiac and neuronal cells. We furthermore extend our scheme to a multidimensional case. |
---|---|
ISSN: | 2331-8422 |