GLOBAL stability for SIRS epidemic models with general incidence rate and tranfer from infectious to susceptible

We study a class of SIRS epidemic dynamical models with a general non-linear incidence rate and transfer from infectious to susceptible. The incidence rate includes a wide range of monotonic, con- cave incidence rates and some non-monotonic or concave cases. We apply LaSalle's invariance princi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-07
Hauptverfasser: Cervantes-Pérez, Angel G, Avila-Vales, Eric J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a class of SIRS epidemic dynamical models with a general non-linear incidence rate and transfer from infectious to susceptible. The incidence rate includes a wide range of monotonic, con- cave incidence rates and some non-monotonic or concave cases. We apply LaSalle's invariance principle and Lyapunov's direct method to prove that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number R0 lesser or equal to 1, and the endemic equilibrium is globally asymptotically stable if R0 > 1, under some conditions imposed on the incidence function f(S; I).
ISSN:2331-8422