The Mutual information of LDGM codes
We provide matching upper and lower bounds on the mutual information in noisy reconstruction of parity check codes and thereby prove a long-standing conjecture by Montanari [IEEE Transactions on Information Theory 2005]. Besides extending a prior concentration result of Abbe and Montanari [Theory of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide matching upper and lower bounds on the mutual information in noisy reconstruction of parity check codes and thereby prove a long-standing conjecture by Montanari [IEEE Transactions on Information Theory 2005]. Besides extending a prior concentration result of Abbe and Montanari [Theory of Computing 2015] to the case of odd check degrees, we precisely determine the conjectured formula for code ensembles of arbitrary degree distribution, thus capturing a broad class of capacity approaching codes. |
---|---|
ISSN: | 2331-8422 |