Investigating Reinforcement Learning Agents for Continuous State Space Environments
Given an environment with continuous state spaces and discrete actions, we investigate using a Double Deep Q-learning Reinforcement Agent to find optimal policies using the LunarLander-v2 OpenAI gym environment.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an environment with continuous state spaces and discrete actions, we investigate using a Double Deep Q-learning Reinforcement Agent to find optimal policies using the LunarLander-v2 OpenAI gym environment. |
---|---|
ISSN: | 2331-8422 |