Morita equivalence of pointed fusion categories of small rank
We classify pointed fusion categories C(G, \(\omega\)) up to Morita equivalence for 1 < |G| < 32. Among them, the cases |G| = 2 3 , 2 4 and 3 3 are emphasized. Although the equivalence classes of such categories are not distinguished by their Frobenius-Schur indicators, their categorical Morit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We classify pointed fusion categories C(G, \(\omega\)) up to Morita equivalence for 1 < |G| < 32. Among them, the cases |G| = 2 3 , 2 4 and 3 3 are emphasized. Although the equivalence classes of such categories are not distinguished by their Frobenius-Schur indicators, their categorical Morita equivalence classes are distinguished by the set of the indicators and ribbon twists of their Drinfeld centers. In particular, the modular data are a complete invariant for the modular categories Z(C(G, \(\omega\))) for |G[< 32. We use the computer algebra package GAP and present codes for treating complex-valued group cohomology and calculating Frobenius-Schur indicators. |
---|---|
ISSN: | 2331-8422 |