Gradient Coding from Cyclic MDS Codes and Expander Graphs

Gradient coding is a technique for straggler mitigation in distributed learning. In this paper we design novel gradient codes using tools from classical coding theory, namely, cyclic MDS codes, which compare favorably with existing solutions, both in the applicable range of parameters and in the com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Raviv, Netanel, Tamo, Itzhak, Tandon, Rashish, Dimakis, Alexandros G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gradient coding is a technique for straggler mitigation in distributed learning. In this paper we design novel gradient codes using tools from classical coding theory, namely, cyclic MDS codes, which compare favorably with existing solutions, both in the applicable range of parameters and in the complexity of the involved algorithms. Second, we introduce an approximate variant of the gradient coding problem, in which we settle for approximate gradient computation instead of the exact one. This approach enables graceful degradation, i.e., the \(\ell_2\) error of the approximate gradient is a decreasing function of the number of stragglers. Our main result is that normalized adjacency matrices of expander graphs yield excellent approximate gradient codes, which enable significantly less computation compared to exact gradient coding, and guarantee faster convergence than trivial solutions under standard assumptions. We experimentally test our approach on Amazon EC2, and show that the generalization error of approximate gradient coding is very close to the full gradient while requiring significantly less computation from the workers.
ISSN:2331-8422