Optimal Offline Dynamic \(2,3\)-Edge/Vertex Connectivity

We give offline algorithms for processing a sequence of \(2\) and \(3\) edge and vertex connectivity queries in a fully-dynamic undirected graph. While the current best fully-dynamic online data structures for \(3\)-edge and \(3\)-vertex connectivity require \(O(n^{2/3})\) and \(O(n)\) time per upda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-03
Hauptverfasser: Peng, Richard, Sandlund, Bryce, Sleator, Daniel D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give offline algorithms for processing a sequence of \(2\) and \(3\) edge and vertex connectivity queries in a fully-dynamic undirected graph. While the current best fully-dynamic online data structures for \(3\)-edge and \(3\)-vertex connectivity require \(O(n^{2/3})\) and \(O(n)\) time per update, respectively, our per-operation cost is only \(O(\log n)\), optimal due to the dynamic connectivity lower bound of Patrascu and Demaine. Our approach utilizes a divide and conquer scheme that transforms a graph into smaller equivalents that preserve connectivity information. This construction of equivalents is closely-related to the development of vertex sparsifiers, and shares important connections to several upcoming results in dynamic graph data structures, outside of just the offline model.
ISSN:2331-8422