Aging-related increase in store-operated Ca^sup 2+^ influx in human ventricular fibroblasts
Senescence-related fibrosis contributes to cardiac dysfunction. Profibrotic processes are Ca2+ dependent. The effect of aging on the Ca2+ mobilization processes of human ventricular fibroblasts (hVFs) is unclear. Therefore, we tested whether aging altered intracellular Ca2+ release and store-operate...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Heart and circulatory physiology 2018-07, Vol.315 (1), p.H83 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Senescence-related fibrosis contributes to cardiac dysfunction. Profibrotic processes are Ca2+ dependent. The effect of aging on the Ca2+ mobilization processes of human ventricular fibroblasts (hVFs) is unclear. Therefore, we tested whether aging altered intracellular Ca2+ release and store-operated Ca2+ entry (SOCE). Disease-free hVFs from 2- to 63-yr-old trauma victims were assessed for cytosolic Ca2+ dynamics with fluo 3/confocal imaging. Angiotensin II or thapsigargin was used to release endoplasmic reticulum Ca2+ in Ca2+-free solution; CaCl2 (2 mM) was then added to assess SOCE, which was normalized to ionomycin-induced maximal Ca2+. The angiotensin II experiments were repeated after phosphoenolpyruvate pretreatment to determine the role of energy status. The expression of genes encoding SOCE-related ion channel subunits was assessed by quantitative PCR, and protein expression was assessed by immunoblot analysis. Age groups of |
---|---|
ISSN: | 0363-6135 1522-1539 |