The confirmation of a conjecture on disjoint cycles in a graph
In this paper, we prove the following conjecture proposed by Gould, Hirohata and Keller [Discrete Math. submitted]: Let \(G\) be a graph of sufficiently large order. If \(\sigma_t(G) \geq 2kt - t + 1\) for any two integers \(k \geq 2\) and \(t \geq 5\), then \(G\) contains \(k\) disjoint cycles.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove the following conjecture proposed by Gould, Hirohata and Keller [Discrete Math. submitted]: Let \(G\) be a graph of sufficiently large order. If \(\sigma_t(G) \geq 2kt - t + 1\) for any two integers \(k \geq 2\) and \(t \geq 5\), then \(G\) contains \(k\) disjoint cycles. |
---|---|
ISSN: | 2331-8422 |