Lichiardopol's conjecture on disjoint cycles in tournaments
In 2010, N. Lichiardopol conjectured for \(q \geq 3\) and \(k \geq 1\) that any tournament with minimum out-degree at least \((q-1)k-1\) contains \(k\) disjoint cycles of length \(q\). We prove this conjecture for \(q \geq 5\). Since it is already known to hold for \(q\le4\), this completes the proo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2010, N. Lichiardopol conjectured for \(q \geq 3\) and \(k \geq 1\) that any tournament with minimum out-degree at least \((q-1)k-1\) contains \(k\) disjoint cycles of length \(q\). We prove this conjecture for \(q \geq 5\). Since it is already known to hold for \(q\le4\), this completes the proof of the conjecture. |
---|---|
ISSN: | 2331-8422 |