Convergence to a Continuous State Branching Process with jumps and Height Process
In this work, we study asymptotics of the genealogy of Galton-Watson processes. Thus we consider a offspring distribution such that the rescaled Galton-Watson processes converges to a continuous state branching process (CSBP) with jumps. After we show that the rescaled height (or exploration) proces...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study asymptotics of the genealogy of Galton-Watson processes. Thus we consider a offspring distribution such that the rescaled Galton-Watson processes converges to a continuous state branching process (CSBP) with jumps. After we show that the rescaled height (or exploration) process of the corresponding Galton-Watson family tree, converges in a functional sense, to the continuous height process that Le Gall and Le Jan introduced in 1998 on their paper "branching processes in Lévy processes : The exploration process". |
---|---|
ISSN: | 2331-8422 |