A pseudo‐transient optimization framework for periodic processes: Pressure swing adsorption and simulated moving bed chromatography
Periodic systems are widely used in separation processes and in reaction engineering. They are designed for and operated at a cyclic steady state (CSS). Identifying and optimizing the CSS has proven to be computationally challenging. A novel framework for equation‐oriented simulation and optimizatio...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2018-08, Vol.64 (8), p.2982-2996 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Periodic systems are widely used in separation processes and in reaction engineering. They are designed for and operated at a cyclic steady state (CSS). Identifying and optimizing the CSS has proven to be computationally challenging. A novel framework for equation‐oriented simulation and optimization of cyclic processes is introduced. A two‐step reformulation of the process model is proposed, comprising, (1) a full discretization of the time and spatial domains and (2) recasting the discretized model as a differential‐algebraic equation system, for which theoretical stability guarantees are provided. Additionally, a mathematical, structural connection between the CSS constraints and material recycling is established, which allows us to deal with these conditions via a “tearing” procedure. These developments are integrated in a pseudo‐transient design optimization framework and two extensive case studies are presented: a simulated moving bed chromatography system and a pressure swing adsorption process. © 2017 American Institute of Chemical Engineers AIChE J, 64: 2982–2996, 2018 |
---|---|
ISSN: | 0001-1541 1547-5905 |
DOI: | 10.1002/aic.15987 |