Quasisymmetric functions for nestohedra

For a generalized permutohedron \(Q\) the enumerator \(F(Q)\) of positive lattice points in interiors of maximal cones of the normal fan \(\Sigma_Q\) is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-05
1. Verfasser: Grujić, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Grujić, Vladimir
description For a generalized permutohedron \(Q\) the enumerator \(F(Q)\) of positive lattice points in interiors of maximal cones of the normal fan \(\Sigma_Q\) is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of building sets. For the class of graph-associahedra the corresponding quasisymmetric function is a new isomorphism invariant of graphs. The obtained invariant is quite natural as it is the generating function of ordered colorings of graphs and satisfies the recurrence relation with respect to deletions of vertices.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075456715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075456715</sourcerecordid><originalsourceid>FETCH-proquest_journals_20754567153</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDyxNLM4srszNTS0pykxWSCvNSy7JzM8rVkjLL1LISy0uyc9ITSlK5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpUBl8Vn5pUV5QKl4IwNzUxNTM3NDU2PiVAEAzZIwjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075456715</pqid></control><display><type>article</type><title>Quasisymmetric functions for nestohedra</title><source>Free E- Journals</source><creator>Grujić, Vladimir</creator><creatorcontrib>Grujić, Vladimir</creatorcontrib><description>For a generalized permutohedron \(Q\) the enumerator \(F(Q)\) of positive lattice points in interiors of maximal cones of the normal fan \(\Sigma_Q\) is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of building sets. For the class of graph-associahedra the corresponding quasisymmetric function is a new isomorphism invariant of graphs. The obtained invariant is quite natural as it is the generating function of ordered colorings of graphs and satisfies the recurrence relation with respect to deletions of vertices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Combinatorial analysis ; Cones ; Graphs ; Invariants ; Isomorphism</subject><ispartof>arXiv.org, 2017-05</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Grujić, Vladimir</creatorcontrib><title>Quasisymmetric functions for nestohedra</title><title>arXiv.org</title><description>For a generalized permutohedron \(Q\) the enumerator \(F(Q)\) of positive lattice points in interiors of maximal cones of the normal fan \(\Sigma_Q\) is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of building sets. For the class of graph-associahedra the corresponding quasisymmetric function is a new isomorphism invariant of graphs. The obtained invariant is quite natural as it is the generating function of ordered colorings of graphs and satisfies the recurrence relation with respect to deletions of vertices.</description><subject>Apexes</subject><subject>Combinatorial analysis</subject><subject>Cones</subject><subject>Graphs</subject><subject>Invariants</subject><subject>Isomorphism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDyxNLM4srszNTS0pykxWSCvNSy7JzM8rVkjLL1LISy0uyc9ITSlK5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpUBl8Vn5pUV5QKl4IwNzUxNTM3NDU2PiVAEAzZIwjQ</recordid><startdate>20170516</startdate><enddate>20170516</enddate><creator>Grujić, Vladimir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170516</creationdate><title>Quasisymmetric functions for nestohedra</title><author>Grujić, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20754567153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apexes</topic><topic>Combinatorial analysis</topic><topic>Cones</topic><topic>Graphs</topic><topic>Invariants</topic><topic>Isomorphism</topic><toplevel>online_resources</toplevel><creatorcontrib>Grujić, Vladimir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grujić, Vladimir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quasisymmetric functions for nestohedra</atitle><jtitle>arXiv.org</jtitle><date>2017-05-16</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>For a generalized permutohedron \(Q\) the enumerator \(F(Q)\) of positive lattice points in interiors of maximal cones of the normal fan \(\Sigma_Q\) is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of building sets. For the class of graph-associahedra the corresponding quasisymmetric function is a new isomorphism invariant of graphs. The obtained invariant is quite natural as it is the generating function of ordered colorings of graphs and satisfies the recurrence relation with respect to deletions of vertices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075456715
source Free E- Journals
subjects Apexes
Combinatorial analysis
Cones
Graphs
Invariants
Isomorphism
title Quasisymmetric functions for nestohedra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quasisymmetric%20functions%20for%20nestohedra&rft.jtitle=arXiv.org&rft.au=Gruji%C4%87,%20Vladimir&rft.date=2017-05-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075456715%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075456715&rft_id=info:pmid/&rfr_iscdi=true