Quasisymmetric functions for nestohedra
For a generalized permutohedron \(Q\) the enumerator \(F(Q)\) of positive lattice points in interiors of maximal cones of the normal fan \(\Sigma_Q\) is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of bu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a generalized permutohedron \(Q\) the enumerator \(F(Q)\) of positive lattice points in interiors of maximal cones of the normal fan \(\Sigma_Q\) is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of building sets. For the class of graph-associahedra the corresponding quasisymmetric function is a new isomorphism invariant of graphs. The obtained invariant is quite natural as it is the generating function of ordered colorings of graphs and satisfies the recurrence relation with respect to deletions of vertices. |
---|---|
ISSN: | 2331-8422 |