Quasisymmetric functions for nestohedra

For a generalized permutohedron \(Q\) the enumerator \(F(Q)\) of positive lattice points in interiors of maximal cones of the normal fan \(\Sigma_Q\) is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-05
1. Verfasser: Grujić, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a generalized permutohedron \(Q\) the enumerator \(F(Q)\) of positive lattice points in interiors of maximal cones of the normal fan \(\Sigma_Q\) is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of building sets. For the class of graph-associahedra the corresponding quasisymmetric function is a new isomorphism invariant of graphs. The obtained invariant is quite natural as it is the generating function of ordered colorings of graphs and satisfies the recurrence relation with respect to deletions of vertices.
ISSN:2331-8422