New challenges of electrokinetic studies in investigating the reaction mechanism of electrochemical CO2 reduction

An electrokinetic analysis of electrochemical CO2 reduction reactions provides information about the decoupled involvement of electron–proton transfer from the Tafel slope and reaction order analyses. Conventionally, a one-electron transfer to CO2 and a chemical proton transfer from HCO3− have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (29), p.14043-14057
Hauptverfasser: Chan Woo Lee, Cho, Nam Heon, Im, Sang Won, Jee, Michael Shincheon, Yun Jeong Hwang, Min, Byoung Koun, Nam, Ki Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An electrokinetic analysis of electrochemical CO2 reduction reactions provides information about the decoupled involvement of electron–proton transfer from the Tafel slope and reaction order analyses. Conventionally, a one-electron transfer to CO2 and a chemical proton transfer from HCO3− have been considered to be typical rate-limiting steps. These suggested reaction mechanisms are justified under several assumptions: (1) the bicarbonate ion is a major proton donor, (2) the gaseous CO2 is a carbon source, (3) the reaction mechanism is unaffected by the applied potentials outside the Tafel region, etc. However, recent electrokinetic studies combined with in situ and isotopic experiments raise a question that the above conventional assumptions may not always be valid. Furthermore, there are unresolved issues between the mechanisms suggested by electrokinetic studies. In this review, reported reaction mechanisms of the CO2 reduction reaction are summarized with CO and HCOO− formation as model reaction systems. The reaction pathways are also discussed with a theoretical consideration. A deep investigation into the mechanisms reveals the complex feature of reaction pathways and the difficulty in suggesting the mechanism solely from an electrokinetic analysis.
ISSN:2050-7488
2050-7496
DOI:10.1039/c8ta03480j