Unimodular f(T) gravity
We reconstruct the geometrical \(f(T)\) actions in the framework of unimodular \(f(T)\) gravity. The unimodular \(f(T)\) gravity yields stunning properties related to the generalized Friedmann equations. Indeed, it has been found that depending on the form of the Friedmann equations, the Lagrange mu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We reconstruct the geometrical \(f(T)\) actions in the framework of unimodular \(f(T)\) gravity. The unimodular \(f(T)\) gravity yields stunning properties related to the generalized Friedmann equations. Indeed, it has been found that depending on the form of the Friedmann equations, the Lagrange multipliers may or not depend on the time parameter \(\tau\). Moreover we find that the reconstruction of \(f(T)\) functions can be easily performed in general, not depending on a given scale factor, or can determine a particular way, depending on a given scale factor, in the vacuum. It is noted that the reconstruction of a general action joins is consistent to the unimodular gravity for the constant \(\Lambda\) |
---|---|
ISSN: | 2331-8422 |