A separable Fréchet space of almost universal disposition
The Gurari\uı space is the unique separable Banach space \(\mathbb{G}\) which is of almost universal disposition for finite-dimensional Banach spaces, which means that for every \(\varepsilon>0\), for all finite-dimensional normed spaces \(E \subseteq F\), for every isometric embedding \({e}\colo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Gurari\uı space is the unique separable Banach space \(\mathbb{G}\) which is of almost universal disposition for finite-dimensional Banach spaces, which means that for every \(\varepsilon>0\), for all finite-dimensional normed spaces \(E \subseteq F\), for every isometric embedding \({e}\colon{E}\to{\mathbb{G}}\) there exists an \(\varepsilon\)-isometric embedding \({f}\colon{F}\to{\mathbb{G}}\) such that \(f \restriction E = e\). We show that \(\mathbb{G}^{\mathbb{N}}\) with a special sequence of semi-norms is of almost universal disposition for finite-dimensional graded Fréchet spaces. The construction relies heavily on the universal operator on the Gurari\uı space, recently constructed by Garbulińska-Wegrzyn and the third author. This yields in particular that \(\mathbb{G}^{\mathbb{N}}\) is universal in the class of all separable Fréchet spaces. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1603.06361 |