Laderman matrix multiplication algorithm can be constructed using Strassen algorithm and related tensor's isotropies
In 1969, V. Strassen improves the classical~2x2 matrix multiplication algorithm. The current upper bound for 3x3 matrix multiplication was reached by J.B. Laderman in 1976. This note presents a geometric relationship between Strassen and Laderman algorithms. By doing so, we retrieve a geometric form...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1969, V. Strassen improves the classical~2x2 matrix multiplication algorithm. The current upper bound for 3x3 matrix multiplication was reached by J.B. Laderman in 1976. This note presents a geometric relationship between Strassen and Laderman algorithms. By doing so, we retrieve a geometric formulation of results very similar to those presented by O. Sykora in 1977. |
---|---|
ISSN: | 2331-8422 |