Periods of Mixed Tate Motives over Real Quadratic Number Rings
Recently, the author defined multiple Dedekind zeta values \cite{MDZF} associated to a number \(K\) field and a cone \(C\). In this paper we construct explicitly non-trivial examples of mixed Tate motives over the ring of integers in \(K\), for a real quadratic number field \(K\) and a particular co...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, the author defined multiple Dedekind zeta values \cite{MDZF} associated to a number \(K\) field and a cone \(C\). In this paper we construct explicitly non-trivial examples of mixed Tate motives over the ring of integers in \(K\), for a real quadratic number field \(K\) and a particular cone C. The period of such a motive is a multiple Dedekind zeta values at \((s_1,s_2)=(1,2)\), associated to the pair \((K;C)\), times a nonzero element of \(K\). |
---|---|
ISSN: | 2331-8422 |